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Chapter 7

Hypothesis Testing

Two-Tailed Hypothesis Tests
(Large Sample, n = 30)

ypothesis testing is nothing more than a formalized approach to the central
limit theorem incorporating the concepts of accept/reject decision making
and Type I error. Let’s see how it works in the following problem. v

Suppose the Fiche Company (a manufacturer of telephone cable) receives
shipments of fiber optic thread, hair-thin strands of glass capable of transmitting
hundreds of thousands of times more information than a copper wire. The Fiche
Company will ultimately coat the fiber-optic threads with steel and plastic and
bind several into cables to be laid on ocean floors for intercontinental commu-
nications. However, it is important for production purposes that the incoming
shipments of hair-thin glass fiber thread maintain an average thickness of .560
mm. Of course the supplier of the thread claims this is so.

Claim: p = .560—\

“___~Thickness (diameter of thread)

This is a typical situation in business. A supplier ships you goods and makes
a claim with the expectation that you will believe that claim. In this case, the
claim is: the average thickness of fiber optic thread in the shipment is .560 mm.
In statistical terms, we call this a hypothesis.

A hypothesis, then, is merely a claim put forth by someone. This
hypothesis or claim is denoted by the symbol /7, or /4 (Hsub-zero) and
referred to formally as the null-hypothesis.”

In this case, our claim or null hypothesis would be written

Hy: L = .560 mm

This null hypothesis may or may not be true. The supplier may have doc-
umented evidence for making such a claim, or may simply be guessing. In fact,
for all we know, the supplier may be lying outright, which of course obliges us
as prudent individuals to test their claim. This test is referred to as a hypothesis
test.

#Technical note: Actually the symbol H, originates from tests involving the comparison of
two population means or proportions, however the symbol Hy has now evolved to represent
any hypothesis set up for the purposes of seeing if it can be rejected.
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Hypothesis Test
A test designed to prove or disprove some initial claim, your null

hypothesis, .

When dealing with a hypothesis test, we always begin by assuming the
claim or null hypothesis (Hy) is true, in this case that the supplier is correct, that
indeed the average thickness is & = .560 mm for these shipments of fiber optic
thread.

We begin a hypothesis test by assuming /44 is true.

Indeed, if we accept Hy: u = .560 mm as true (which we must to begin a
hypothesis test), then we know from decades of experience a certain logic will
necessarily follow, namely, if we were to measure the thickness of all the glass
fiber in the shipment and arrange these measurements according to size into a
histogram, these measurements would probably cluster about the average value
of u = .560 mm, however many measurements would be less than .560 mm and
many would be more, and the histogram might take on the following shape.

Population histogram: ”
Millions and millions of
measurements of glass fiber H
arranged according to {
thickness I

u =560 mm [

f

¥ =.560 mm

Notice this population is somewhat ragged in shape with a slight skew.
Although in real life we may not actually know the shape of the population prior
to sampling, it would not be unusual for such a ragged skewed shape to appear.
Although the output from one process or machine, properly operating and running
uninterrupted, is often found to be normally or nearly normally distributed, an
entire shipment may very well consist of output from several machines or pro-
cesses over several periods of time and, thus, could vary considerably. When the
output from various processes are mixed, a normal distribution may or may not
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form, depending on a number of factors. However, this should not make a dif-
ference in our analysis of |1, since whatever the shape of your population, as long
as the sample size exceeds 30, the X distribution will be normally distributed, as
follows:

Population histogram: Pl
millions and millions of 7> W _ﬂ-‘"
measurements of glass fiber *""" | N o
arranged according to MM
thickness; pL = .560 mm } -‘ I
M | x distribution: several
dll 1 i r thousand sample averages
1 which represent the total
=

f

w=.560 mm

However, we do have another problem.

Noticeably absent from the above histogram is information concerning the
standard deviation of this population, ¢, which in real-life situations is often not
supplied. In fact, more often than not. it is simply unknown. However, without
o we cannot calculate o=

o
Remember: 6y = —
Jn
And without o, we cannot estimate the spread of our X distribution, which tells
us where we should expect sample averages (X's) to cluster—which of course
forms the entire basis of our central limit theorem analysis. In other words, we
are stuck!

But wait, the problem is not insurmountable. We have learned from prior
exercises that when we randomly select 30 or more measurements from a pop-
ulation that

X=U the sample average, X, is approximately equal to the population
average, WL, and

s=0 the sample standard deviation, s, is approximately equal to the
population standard deviation.

If indeed s = o, that is, the individual measurements in one sample are
spread out in a manner similar to how the measurements in the entire population
are spread out, we may be able to use the standard deviation of one sample, s,
as an estimator of the standard deviation of the entire population, 6. Experience
has confirmed that when your sample size is over 30, indeed the spread of
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measurements in one sample is a good estimator of the spread of measurements
in the entire population—that is, s is a good estimator of @, and this is precisely
what is done in industry and research studies.

sis used to estimate . :

Since the standard deviation of one sample should give us what we want
to know, namely, an approximation of &, the standard deviation of the population,
then the telephone cable manufacturer is obliged on receiving the shipment to
take a random sample. Although many results are possible, let us say, for the
purposes of this example that the manufacturer randomly samples 36 pieces of
fiber-optic thread and calculates the following:

n = 36 measurements
X =.3553 mm
s = .030 mm

If this is indeed a properly conducted random sample, the spread (standard
deviation) of the 36 measurements should be similar to the spread (standard
deviation) of the entire population. That is, if s = .030 mm (note sample results
above) and if s = ¢, then ¢ must be approximately equal to .030 mm. And we
can use this estimate to calculate o5, as follows:

s g e L G HOE
U Un 366
= 005 mm

Now that we know o5 is approximately equal to .005 mm, we can now estimate
the spread of the ¥ distribution.

Population histogram: J .[‘
millions and millions of — g H
individual measurements ""W y

of glass fiber arranged [— ] ’-W )
according to thickness { T

= .560 mm M, [

o= O30T A distribution: several

[-r thousand sample averages
which represent the total

(sample size, n = 36)

U= .560 mm

;= 005 mm

..

550 .570
555 | .565

500 mm 530 mm 560 mm 590 mm 620 mm
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Keep in mind, what we have done so far is a make-believe construction
based solely on the assumption that the supplier’s claim U = .560 mm is true.
We really do not know whether o = .560 mm is true or not. We are merely
saying: “‘if”” i = .560 mm is true, and **if”" we were to measure every piece of
fiber in the shipment, and *‘if’” we continually took random samples of 36 meas-
urements and calculated the sample average, X, for each sample, then the central
limit theorem tells us that the X’s should form into a normally distributed X dis-
tribution, symmetrical about u = .560 mm and spread out as shown above.

Okay, now that we know what the X distribution should look like if the
supplier’s claim is true, how do we prove (or disprove) i = .560 mm? Simple.
We take a random sample of 36 measurements from our shipment, calculate the
sample average, X, and observe if this X reasonably fits into the expected X
distribution.

Wait a minute. We already took a random sample of 36 measurements.
True. There’s no point spending time and money on another sample. Let’s use
the ¥ we observed from the earlier sample. If you recall, our sample results were
as follows (reprinted here for convenience):

n = 36 measurements
X = .553 mm <—— (Now we are interested in this measurement)
s = .030 mm

Notice that, now, we are concerned with the X of the sample. In other words, does
this ¥ of .553 mm reasonably fit into our expected ¥ distribution? And the answer
is, yes. We can look at this sample average of .553 mm and look at the ¥ distri-
bution and see that this X of .553 mm is a reasonably likely occurrence. Observe:

Sample average 1l
X =.553mm .
|.v distribution

500 mm 530 560 mm 590 mm 620 mm
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Since an ¥ of .553 mm would be g reasonably likely occurrence, we con-
clude that the supplier’s claim (1= .560 mm) is quite possible, If we choose 1o
make a firm accept Hy or reject Hy decision, then we

Accept H: H =560 mm

In reality, there s not enough evidence to prove p is precisely 560 mm,
The best we can show is that H = .560 mm js reasonably possible given the
evidence of this one sample. The concept of hypothesis testing is much like a
Jury trial: u = 560 mm is innocent (accepted) unless Proven guilty. Since a
sample average of ¥ = -553 mm does not prove the supplier’s claim false, then
WE must assume the supplier’s claim is true,

Professionally, this conclusion is written in a number of ways. Two of the
most popular are:

The null hypothesis cannot be rejected
or
Results not significant*

Both statements say the same thing, that is, if we use the accept Hy-reject
Hy format, then we Mmust accept the supplier’s claim (u = 560 mm), since we

as follows:

Since the sample average of ¥ = 553 mm reasonably fits into the
expected x distribution for H = .560 mm, we

Accept Hy: K= .560 mm

Now you might feel a little uncomfortable accepting H, since your sample
average (.553 mm) did not fal] precisely on the claimed population value of 560
mm. And at this point you might say, why don’t we continue sampling to be
more positive of our decision? Unfortunately, in most areas of research, further
sampling is not practical. It is usually expensive, time—consuming, and in some
cases physically impossible (when test circumstances cannot be duplicated). Cer-
tainly in this production control experiment, another random sample can be taken
with relative ease, however in most studies in marketing, medicine, sociology,
economics, and other fields, we often must rely on the results of one and only

*The words nor significant have a very special meaning in statistical testing. They mean the
results may reasonably be attributed 10 ““chance fluctuation.”” In other words, T'g may very
well vary, fluctuate by chance, between 550 mm and .570 mm when M = 560 mm. Since
we achieved an ¥ (,553 mm) in this chance fluctuation range, we merely accept Hy. In
broad terms, when sample results are,

Not significant:  we accept H,
Significant: we reject H,
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one sample. Even in this production control experiment, no one wants to absorb
the added time and expense of further sampling unless absolutely necessary. In
other words, in statistical studies,

we normally base our decision on one and only one sample.

And we will conform to this practice in this text. So, to sum up our experiment,
if our one sample average, %, is reasonably close to the claimed , we accept Hy
as true and therefore accept the shipment of fiber-optic thread as meeting our
specification of p = .560 mm.

However, this may cause some questions, such as: at what point do we
Zrow suspicious that our sample X 1s nol regsonably close 10 w? For instance,
what if our sample average turned out to be 550 mm or .540 mm or 5777 Clearly,
these values ar¢ on the very fringe of the ssexpected”’ sample averages. Observe:

i
§

|
L1

.550 N 570
555 | .565

500 mm 530 mm 560 mm 590 mm 620 mm

In other words, at what value of X do we begin to grow suspicious that maybe
the supplier’s claim is false? Fortunately, there are certain industry standards that
have proven reliable over decades of use. Although a number of industry stan-
dards exist, one of the most popular is the

Level of significance, O = 5% (.05)

Although discussed in the last chapter, @ brief review here might be helptul.
Essentially, a level of significance sets up the cutoffs, or boundaries for accepting
or rejecting Ho. For instance,

For level of significance, 0t = 59 (.05),* establish where the middle 95%
of the X’s are expected 10 fall if Ho is true. Then. if the X you calculate

#Actually. many levels of significance are possible.
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from your random sample falls inside (or exactly on the border) of this
95% range, accept H; as true. If the sample X falls outside, assume H, is
false.

Visually we might present this oo = .05 hypothesis test as follows:

o = .03
two-tailed test

Accept H,
for middle
95%

u
5% of X's

Reject Hy—=

Two-Tailed Test
This is called a two-tailed hypothesis test since we have two tails of rgjection
(as shown shaded above). That is, we would reject the null hypothesis for

any sample X falling in either of the /o shaded tails.

To recap: if your sample X falls inside this 95% range (or on the border),
accept Hy. If your sample X falls outside this range (that is, in the shaded tails),
reject Hy. And this is precisely what is done in industry and research. Now let
us repeat this problem as it would be worded and solved in practice.

A supplier claims the average thickness (diameter) of its fiber-optic thread is .560
mm. You receive a shipment and decide to test their claim at a .05 level of

significance by taking a sample of 36 randomly selected measurements, with the
following results:

36 measurements
553 mm
= .030 mm

n

L=
Il

What can we conclude?
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Seguence
Hy:
Hiir
o
Sequence

Calculate

Oz

Draw Curves

Hypothesis Testing

A hypothesis test consists of three fundamental sequences as follows.

1. Set up initial condirions: Hy, H,, and level of significance

In Our Example,
It Would Be
State the null hypothesis, that is, Hy: u = .560 mm
the claim or assertion you wish to

test.

State the alternative hypothesis.
In other words, if H proves false,
then what must we conclude?

Hy:uw# .560 mm

State the level of significance, o, o = .05 (5%)
that is, the risk of a Type I error

(the risk of rejecting Hy in error).

11. Assume Hy true, use o to establish cutoffs as follows:

We must remember we are (o] s
dealing with ¥’s and therefore S
must first calculate o3, the 030 .030
standard deviation of the X = _% = T
distribution. Note in our formula ~ 005 s

for . we used s (the standard
deviation of the sample) as an
estimator of ¢ (the population
standard deviation).

X distribution
Using our above calculation, ox
= 005 mm, we estimate the
spread of the X distribution.

2 (z scores)

Establish Cutoffs (using a, the level of significance)

Our level of significance in this
case is oo = .05 (5%), which in

a two-tailed test implies we will
accept the middle 95% of the
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X’s as our boundary for Middle 95%

accepting Hy as true. We now ‘_(’“rsmribmm
look up the z scores e
corresponding to the middle

4750(.4750

95% of the x’s, which turn sy
out to be z = —1.96 and 1l .560 mm +
S ..
2 = +LE6. s 16 ¢ Sy
Remember: the normal
curve table reads half the Normal Cuitve Table
normal curve, starting from ():0 00 0T .=, -?6

z = 0 out, so we look up

<+ of 95% or 47+%, which in
decimal form is .4750 (as
shown at right).

19 | 2750

Substituting the z scores of —1.96 and +1.96 into our formula, we solve
for the ¥ at the cutoffs.

_X=p !
) Ox T o
x - .560 X = .560
—-1.96 = ——— +1.96 = ————
005 .005
Solving for x: Solving for x:
x = .550 mm x = .570 mm

The completed solution would appear graphically as follows:

LL[ Population

Accept H,,

X distribution for

Y
/‘Q mple size of n = 36

500 mm 530 mm 560 mm 590 mm 620 mm

Note that the reject zones are shaded, that is, the zones where we would reject u = .560 mm as being true.
This is your risk of a Type | error (5%).
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Sequence

METHOD ONE
| This method uses the |
| actual value of the sample x |
| (.553) in the decision-
 making process.

- SERERT . i

Recall: Our sample results were as
follows:

n = 36 measurements

x = .553 mm

METHOD TWO
This method uses the z !
| score of the sample X in the
decision-making process. |
To use this method,
however, we must first
calculate the z score of our
| sample x (.553 mm), as
follows.

- 553 - .560
oz .005
z=-140

Z =

1. Accept or reject Hy using your sample X: For this, two methods are available.
Method One uses the actual value of the sample X. Method Two uses the z
score of the sample ¥. Since each adds to understanding, we shall employ
both.

Criteria: Accept H;, (n=.560 mm)
if your sample X falls between

the established ¥ cutoffs of .550 mm
and .570 mm, otherwise reject.

Decision: Since our sample X
(.553 mm) fell in the acceptance
zone for Hy, we accept H,,

(n =.560 mm) as true.

Sample ¥ =553 mm

X
T

£=.550 mm | X =.570 mm
(cutoff) (cutoff)

t H,
p=.560 mm AcePpLl

Criteria: Accept Hy (p = .560 mm)

if the z score of your sample ¥

falls between the established z score
cutoffs of —1.96 and +1.96,

otherwise reject. LL[

Decision: Since the z score of

our sample ¥ (=1.40) fell in the
acceptance zone for Hy, we accept
Hy(u=.560 mm) as true.

z score of
sample ¥ =—1.40

T

z=-1.96 z=+1.96
(cutoff) (cutoff)
z=0 ‘
(.560 mm) AcceptHy

Whether we use the actual value of the sample X or the z score of the sample
¥, we will always make the same decision. In this case, we accept H,. Generally,
the z score is preferred by those most familiar with statistical technique since the
z score is a more informative measure. Note that we better understand the position
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of the sample ¥ if we say it is —1.40 standard deviations from the claimed W than
if we merely presented its actual value of .553 mm.*

Answer The final answer may be presented in a number of ways, depending on the tech-
nical expertise of those reading the report.

a. If the report is to be presented to individuals unfamiliar with statistical
technique, perhaps the following offers a clear approach:

Since the sample average we obtained from the shipment (.553 mm) falls
inside the range (.550 to .570) where we would most likely expect sample
averages to fall if H, were true, we accept Hy: 1 = .560 mm, and therefore

accept the shipment.
Accept H_o

b. However, this same answer may very well appear in a technical report
worded in terms of z scores, as follows:

Since our sample z of —1.40 is not less than — 1,96, the null hypothesis
cannot be rejected. The difference between .553 mm and .560 mm is not
large enough to provide evidence at the .05 level of significance that the
shipment does not meet supplier’s specification.

Null hypothesis cannot be rejected

*P-value approach: Actually a third method is also used. This method calculates the
probability of achieving a result ar least as many standard deviations from the expected
value as your sample result.

8.08%, 8.08%

—1.40 p+1.40 p=16.16% (0.16)
(cutoff) (cutoff)

Let’s reconsider the above example. Since we achieved a sample result 1.40 standard
deviations from the expected value, U (calculated in Method Two), we shade all the area
that is ar leasr 1.40 standard deviations from p. Note in a two-tailed test, we shade both
tails. Next we look up the probability of achieving a sample result in this shaded area,
which is 16.16% (8.08% in cach tail). This is our p-value. This is usually expressed in
technical reports and computer software printouts as either p = .16 or p = .05 (meaning
the probability of achieving this sample ¥ is greater than the o level of the test).

For p = «, Accept Ho, otherwise reject

Since in our case, .16 = .05, we Accept Hy.
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¢. Then again, many feports simply present the results as

z = —1.40 (not significant).
Results not significant”

Believe it or not, all three answers say the same thing. Try to understand the
technical explanations using z scores, since this is typical of how research reports
are presented. |

Control Charts

In production studies and occasionally in marketing, medical, and other studies,
the same hypothesis test may be repeated a number of times. For instance, what
if this telephone cable manufacturer in the prior problem were to accept this
shipment of fiber-optic thread and then ordered additional fiber-optic thread
under the same specifications, to be delivered once a month for several months?
Each monthly shipment may very well be tested in an identical manner. When
essentially the same test must be repeated on a periodic basis, a control chart
can be set up as follows:

Construction of Control Chart

1. On a graph, establish cutoffs for a given hypothesis test. In industrial
production, cutoffs are usually referred to as control limits.

2. Rotate graph - turn counterclockwise, extending the cutoff lines to the
right. Shade rejection zone.

3. Plot each sample ¥ sequentially to the right. Connect each X to prior result
with a line segment.

In a control chart, you may choose to use either actual values or z scores
to represent the readings. For instance, say we use actual values, we would pro-
ceed (using our fiber-optic thread example) as follows.

#Again, the words not significant have a very special meaning in statistical testing.
Essentially, not significant means: the sample results (in this case, Y =.5530rz = —140)
are considered *‘chance fluctuation.”” In other words, we would expect to find x's between
+1.96 standard deviations of the mean if Hy were true. Since the = score (—1.40) of our
sample X was in this chance fluctuation range between +1.96 standard deviations, it is
deemed not significant and we accept Hy.
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570 A
560 561
) 4\ =556
550 553 \ 354 i
)| Yy
(significant)

X=,

Cutoffs established, taken from prior example.

I seo
550

X=.570

Now let’s say we receive 5 shipments over several months
and calculate the sample ¥ for each as follows.

1 . :
Rotate 3 turn counterclockwise, extending

cutolf lines to the right and shading rejection X=.553mm
zone (as shown in next diagram). =

54 mm
56 mm

inin

r=.561 mm
X =.547 mm (significant)

Each sample ¥ is plotted sequentially as the shipment comes
in and connected with a line segment to prior result (as
shown above).

Note that one sample ¥ (.547 mm) was marked “‘significant.”” This means,
based on this one sample average, we would reject this particular shipment as
not meeting specifications. At this point, the production supervisor would likely
be called in. After verifying results, the supervisor may very well call the man-
ufacturer of the fiber-optic thread to inform them that their process was not
meeting specification, and most likely “‘out of control.”” A process is deemed
out of control when sample ¥’s fall outside the contro] limits for acceptance of
Hy and we suspect a possible deterioration of the process.

Note that a control chart provides a clear visual history of this hypothesis
test. Often we learn more about a process by keeping this kind of record. Some-
times we can spot a trend, a process going out of control before a significant
sample X is achieved. Or we may be able to pick up slight shifts in the value of
. even though sample ¥°s are in control. For a process in control, the sample ¥’s
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should fluctuate (usually in a ragged pattern) around the value of . Notice that
the ©'s we calculated, .553. .561, .547, .554, and .556, seem to fluctuate more
around the value of .555 (than the value .560). If this trend continues for future
shipments, we may very well suspect the thickness of the fiber-optic thread
shipped may be on average, i = .555 mm. Of course, whether or not this slight
shift makes a difference in our production would have to be assessed.

A conirol chart* provides a clear visual history of a repetitive test.

One-Tailed Hypothesis Tests
(Large Sample, n = 30)

A one-tailed hypothesis test is quite similar in method to a two-tailed hypothesis
test, except in a one-tailed test, the Type I error risk (o) is assigned to only one
tail of the X distribution.

One-Tailed Hypothesis Test!
All the Type | error risk, a, is assigned to one tail of the X distribution, and
we reject A, for any sample x falling in this one tail only.

The o risk may be assigned to either the right or left tail, depending on the
hypothesis you wish to test. The following two examples demonstrate this.

*Historical note: Walter Shewhart first developed control charts in 1924, which were tested
and developed within the Bell Telephone System, 19261931 For further historical
reading on this topic, refer to, W. Peters, Counting for Something (New York: Springer-
Verlag, 1987), Chapter 16, **Quality Control,”” pp. 151-162.

+Actually, some controversy surrounds the use of one-tailed hypothesis testing. Refer to D.
Howell. Statistical Methods for Psychology (Boston: PWS Publishers, 1982, pp. 64-66) for
a discussion of one- and two-tailed tests. Essentially, Howell argues that an investigator
may start with a one-tailed test, yet reject in two tails, thus inadvertently increasing the o
level of the experiment. Howell also states, “* A number of empirical studies have shown
that the common statistical tests . . . are remarkably robust when they are run as two-
tailed tests. but are not always so robust when run as one-tailed tests.”” Robustness is the
degree to which you can violate the assumptions of a test and yet leave the validity more
or less unaffected.



